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Abstract-For CloudSat and Picasso/Cena to collect nearly 
simultaneous data over the same territory CloudSat’s 
ground track must stay within +/- 1 km (in cross-track) of 
Picasso/Cena’s. The Department of Defense Space Test 
Program (STP) is responsible for CloudSat mission 
operations and its contractors must determine and execute 
orbit maneuvers approximately once per week to maintain 
the ground track separation. This paper derives an optimal 
path for CloudSat relative to Picasso that minimizes the 
average cross-track separation. Using historical atmospheric 
data, the paper then shows that simple parabolic fits of the 
satellites’ relative locations, determined from GPS data, can 
be used to calculate the size and timing of the maneuvers. 
With a judicious selection of the relative location thresholds 
to trigger the maneuvers, this simple approach meets the 
cross-track and maneuver frequency requirements. 
Furthermore, this approach does not require highly accurate 
orbit propagation or atmospheric density models. 
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1. INTRODUCTION 
CloudSat and Picasso/Cena are a pair of cooperative NASA 
missions to investigate how clouds affect climate and to 
improve weather prediction models. CloudSat will carry a 
94-GHz radar and Picasso/Cena will carry a lidar. In order 
for these spacecraft to collect nearly simultaneous data over 
the same region of the earth, CloudSat must fly in formation 
relative to Picasso. CloudSat must keep its ground track 
within +/- lkm (in cross-track) of the ground track of 
Picasso/Cena with at most a 15 second time separation. 
They were originally scheduled to be launched together in 
2003, but it now appears that Picasso/Cena may be launched 
up to a year after CloudSat and CloudSat will fly a similar 
formation with another satellite, Aqua, while retaining the 
goal of flying in formation with Picasso/Cena when it 
reaches orbit. 

The Department of Defense Space Test Program (STP) has 
hired contractors at the RDT&E Support Complex (RSC) at 
Kirtland Air Force Base to conduct CloudSat mission 
operations. It is the responsibility of operators at the RSC to 
maintain the +/- 1 km cross-track maximum separation of 
the ground tracks. They will periodically command 
CloudSat to execute in-track maneuvers to lower its orbit, 
and thus speed it up, before it falls too far behind 
Picasso/Cena. It is desirable that these maneuvers occur no 
more often than about once a week on average in order to 
limit their impact on data collection. The use of ‘braking’ 
maneuvers to avoid overshooting should be limited to avoid 
significant impact on fuel consumption. 

Accurately predicting a satellite’s absolute location several 
days in advance requires very accurate orbit propagation 
programs with detailed models of the earth’s gravity, the 
changing atmosphere, and other perturbing effects. There 
was initial concern that performing this task would require 
upgrades to the current RSC capabilities and put a 
significant burden on the operators and orbit analysts. 
However, it is the satellites’ relative, not absolute, locations 
that are needed. Data from the on-board GPS receivers 
provide an easy way to determine the satellites’ relative 
motion over a period of days prior to a maneuver and 
include an implicit estimate of the atmospheric density. It 
was the purpose of this study to demonstrate that, with a 
simple parabolic model of the relative motion, the 
maneuvers could be easily determined from a very limited 
subset of the GPS data and would meet the requirements 
even during periods of wide fluctuations in the atmospheric 
density. This approach similar to one using a linaer model 
of the semi-major axis decay described in [ 11. 

After initial maneuvering, the satellites will be in nearly 
circular, highly inclined orbits at an altitude of about 
700km. CloudSat trails Picasso/Cena and CloudSat’s orbit is 
rotated slightly in right ascension to compensate for the 
earth’s rotation. Picasso/Cena will have a lower ballistic 
coefficient and, therefore, the orbit of PicassoKena will 
decay more rapidly. As its total energy decreases, 
Picasso/Cena’s velocity will increase and its period will 
decrease compared to those of CloudSat. Left unchecked 
this would cause CloudSat to fall farther behind 
Picasso/Cena and its ground track would keep moving 
farther to the west relative to PicassolCena’s ground track. 
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Eventually, the ground tracks would be separated by more 
than a kilometer for at least part of their orbits. After a 
maneuver CloudSat will be lower and gaining on 
PicassoICena. When PicassoICena’s orbit decays to the 
same altitude as CloudSat the satellites will be moving at 
the same speed. When PicassoICena falls below CloudSat 
again, CloudSat will ‘turn-around’ and begin to fall back 
relative to PicassoICena. 

Section 2 will view Cloudsat’s in-track motion relative to 
an ‘ideal’ location on its orbit. That is the point in 
CloudSat’s orbit where CloudSat’s ground track would 
match PicassoICena’s. We’ll relate this relative in-track 
motion to the cross-track separation at the equator. We’ll 
describe the selection of an optimal ‘turn-around’ point 
relative to this ‘ideal’ location. Under idealized conditions, 
resulting in a constant relative acceleration, the relative 
motion is simply parabolic and optimal ‘turn-around’ point 
minimizes the average cross-track separation. 

However, as we’ll see in Section 3, the atmospheric density 
(and thus the relative acceleration) at this altitude can 
change by a factor of two or more over the course of a few 
days. This is the primary source of error when determining 
the size of the relative velocity change required to achieve a 
desired ‘turn-around’ point. There will also be uncertainties 
in the location of the satellites as determined by on-board 

GPS receivers. These will affect the actual ‘turn-around’ 
location to a lesser extent. It is also necessary to account for 
delays between the collection of the GPS data and the actual 
time of the maneuvers. This section finishes with a 
suggested relative location to conduct the maneuver and a 
desired near-optimal ‘turn-around’ point that allows ample 
margin for the atmospheric variation and other uncertainties, 
while maintaining the desired maneuver frequency. 

The parabolic motion model can then used to estimate the 
time and desired relative velocity change of a maneuver, 
including a braking maneuver, if necessary. This approach 
is described in section 4. The results of studies that included 
a realistic, though somewhat coarse, atmospheric model, 
expected errors in GPS and errors in thruster output indicate 
this strategy will maintain the cross-track requirement even 
through the worst periods of atmospheric density variation. 

Sections 5 and 6 discuss the validity of the simplifying 
assumptions and additional simulation using higher fidelity 
models to confrm these results. 

2. IDEALIZED RELATIVE MOTION 
Figure 1 illustrates the orbit and ground track geometry of 
CloudSat relative to PicassoICena at the point Picasso/Cena 
is crossing the equator fkom North to South (descending). In 
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order to limit the chance of the satellites colliding in the 
event of a loss of control, CloudSat trails PicassoICena. The 
descending node of CloudSat is offset about .06” to 
compensate for the earth rotation in the time between 
PicassoICena’s equatorial crossing and CloudSat’s 
equatorial crossing. At the time Picasso/Cena is crossing the 
equator there is an ‘ideal’ location in the CloudSat orbit. If 
CloudSat is at that ‘ideal’ location it will cross the equator at 
the same longitude as Picasso and if their orbits are identical 
except for the right ascension offset their ground tracks 
would be entirely matched. An ‘ideal’ location could be 
determined for any latitude, but the equator will be most 
useful for this analysis. 

Most of the analysis in the remainder of this paper will be 
based on Cloudsat’s distance from the ‘ideal’ point 
measured once per orbit when Picasso/Cena is crossing the 
equator at its descending node. 

The initial orbit for the satellites is nearly circular 
(eccentricity .0001179) with a semi-major axis of 7077 km 
(altitude about 700 km) and an inclination of 98”. The 
inclination and eccentricity were chosen to maintain a 
‘frozen’ argument of perigee at -90”. This orbit results in 
about 14.5 orbits per sidereal day. So, Cloudsat’s ground 
subpoint is moving about 14.5 times as fast as a point on the 
equator, or 6.74 km/sec. CloudSat itself is traveling on a 
700 km larger circle than the subpoint, and travels about 
11% faster. It is moving about 16.1 times as fast as an 
equatorial ground point or 7.49 km/sec. 

To simplify the analysis and presentation, let’s assume 
CloudSat is moving 16 times as fast as an equatorial point. 
Then, if CloudSat is within 16 km of the ‘ideal’ point 
when Picasso/Cena is crossing the equator, CloudSat will 
cross the equator within 1 km of Picasso/Cena’s 
equatorial crossing point. 

The requirement is to keep the cross-track separation of the 
ground track within +/-1 km throughout the orbit. However, 
for the nearly circular orbits we are considering it is 
sufficient to keep the equatorial crossing points within 
+/- 1 km, or equivalently to keep CloudSat within +/- 16 
km of its ‘ideal’ point when Picasso is at the equator. 
There are two reasons for this. First, if Cloudsat’s crossing 
point at any latitude (including the equator) is within 1 km 
of the point where Picasso crossed that latitude, then the 
cross-track distance between the ground tracks at that 
latitude is less than 1 km. This is because the cross-track is 
the shortest distance between the (nearly) parallel ground 
tracks. With CloudSat’s inclination the cross-track distance 
is about 1% less at the equator. At higher latitudes this 
effect is even larger since the angle between the ground 
track and the latitudinal lines decreases. Second, the speed 
of a ground point rotating with the earth decreases with 
latitude as the cosine of the latitude. At 60 degrees latitude it 
takes twice as long for a point on the earth to rotate 1 km as 
is does at the equator. So at this latitude CloudSat only 
needs to be within +/- 32 km of its ‘ideal’ location to cross 

within +/- 1 km of the point at which Picasso crossed the 
latitude. The differences in the orbits of PicassoICena and 
CloudSat will cause the distance between CloudSat and its 
‘ideal’ point to change slightly during an orbit, but not 
enough to overcome the l/cos(latitude) expansion factor of 
Cloudsat’s acceptable range. This will be discussed further 
in section 5.  

So, the +/1 km range of acceptable equatorial crossing 
points can also be thought of as a +/- 16 km in-track range 
for CloudSat relative to the ‘ideal’ location. The eastern 
equatorial boundary point corresponds to the leading in- 
track boundary point and the western equatorial boundary 
point corresponds to the trailing in-track boundary point. 

Figure 2 shows the correspondence of the in-track location 
of CloudSat relative to its ‘ideal’ location and the difference 
in the equatorial crossings of the satellites. 

Relative Motion 
Simple Model - constant relative acceleration difference due to 
different ballistic coefficients (assumes constant atmosphae) - V, - Cloudsat in-track velocity relative to ‘ideal’ location 

t a.- Cloudsat in-track acceleration relative to ‘ideal’ loadion 

For now, let’s make the idealized assumption that the 
motion of CloudSat relative to PicassoICena and, therefore, 
relative to the ‘ideal’ point, is due only to an acceleration 
difference, a d f ,  caused by the difference in their ballistic 
coefficients (estimated to be 42.5 kg/m**2 for CloudSat and 
26 to 30 kg/m**2 for Picasso/Cena). This means we are 
assuming the two satellites have the same inclination, 
eccentricity, and argument of perigee, which they very 
nearly do. Let’s further assume for the moment that the 
atmospheric density is constant so adiff, is constant 
(atmospheric density variation will be considered in sections 
3 and 4). So over the course of an orbit CloudSat would 
experience a difference in A V  

where I‘ is the orbit period. 
AVdg = P*ad l f  (1) 

Since a small AV in the anti-velocity direction actually 
results in an increase in the satellite’s speed by an amount 
A V  [2] the satellite experiencing the greater acceleration 
(PicassoICena) will be moving faster. 
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For near circular orbits the drift rate of a satellite relative to 
its initial position for a small A V  is 1080* A V / V  degrees 
per orbit and in the opposite direction of the AV .[3] This is 
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because the satellite is not only moving faster, but is Notice, however, that during the boundary-to-boundary 
traveling in an orbit with a smaller radius. Converting the round trip half the time (days 4 through 12) is spent with a 
angles to distances, after an orbit the satellite is traveling at cross-track separation at the equator of greater than .5 km 
a velocity 3 * A V  relative to its initial position. If CloudSat (in-track distance from the ‘ideal’ point greater than 8 km). 
starts at its ‘ideal’ location (which remains fixed relative to Figure 4 shows a family of potential paths of CloudSat’s 
Picasso/Cena’s position) CloudSat is moving at a speed motion relative to the ‘ideal’ point under a relative 
3 * AVdif relative to the ‘ideal’ point in the opposite acceleration, a, = 1 km/day**2. Each path corresponds to a 

direction of the acceleration difference. Therefore, relative 
to the ‘ideal’ point CloudSat moves as though it is under a 
constant relative acceleration 

in the direction opposite CloudSat’s velocity vector. 

Under this constant acceleration assumption CloudSat’s 
motion relative to the ‘ideal’ point is a simple parabola, the 
path of any object under a constant acceleration. Figure 3 
shows an example of the in-track motion of CloudSat 
relative to the ‘ideal’ point due to a constant relative 
acceleration, a,. = 1 km/day**2. The equatorial crossing 
differences are 1/16 of the corresponding relative in-track 
locations and are therefore separating with an acceleration 
of aqx = 1 / 16 km/day**2. 

maneuver conducted at the trailing in-track boundary but 
with a different distance from the ‘ideal’ point at the time 
CloudSat ‘turns around’. Given a relative acceleration, a,, 
and a desired distance from the ‘ideal’ point at ‘turn- 
around’, d T ,  the required relative velocity, v,, 
immediately following the maneuver is 

v, =62*a,*(16-dT) (3) 

The round trip time, TR, for CloudSat to return to the trailing 
boundary is 

TR = 2 * 4 2  * (16 - d,)/a: (4) 

If d(t)  is the relative location at a time t following the 
maneuver, then 
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Figure 4 

d ( t )  = 16 + v, * t + a, * t 2  ( 5 )  

For a given ‘turn-around’ point, d , ,  the average absolute 
distance 1 d( t )  I from the ‘ideal’ point is given by 

(16+2*dT) /3  for d,  2 0  

and (6)  
( 2 * d ~  +16-4*d,J-d,  /(16 - d ~ ) ) / 3  for dT < 0  

It is interesting to note that this average is independent of 
the acceleration. Figure 5 is a graph of this average as a 
function of d , .  The minimum average value of -4.9 km 
occurs at d ,  ‘Y -2.2 km. See the appendix for derivations of 
equations (3), (4), and (6). 

So, if you start at the trailing boundary, a maneuver strategy 
that minimizes the average distance from the ‘ideal’ point 
over the round trip, and thus minimizes the average 
equatorial separation, would aim for a ‘turn-around’ 2.2 km 
beyond the ‘ideal’ point. This still leaves a 76% (13.848.6) 
margin beyond the desired ‘turn-around’ point to the leading 
boundary. As we’ll see, this margin will be useful to 
accommodate uncertainties in the relative position and 
velocity of the satellites and the uncertainty in the relative 
acceleration due to changes in the atmospheric density. 
Also, since the round trip time is proportional to the square 
root of the distance between the maneuver and the ‘turn- 
around’ point the round trip time would still be about 75% 
(.\/i8.2/32) of the 16 day boundary to boundary round trip 
or approximately 12 days. So, while aggressively aiming for 
the leading boundary would maximize round trip time, 
aiming for a point well back from the boundary improves 
the average separation and reduces the risk of overshoot. 

If a different point is chosen to conduct the maneuvers, the 
distances scale and the ratio of the distance from the 
maneuver location to the ‘ideal’ location and the ‘ideal’ 
location to the ‘turn-around’ point is still about 7 to 1 .  So, 
the optimum ‘turn-around’ is then approximately d ,  I7 

Absolute Distance from Ideal Point 
(Beglnning from Trailing Boundary) 

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 

Turnaround Looatlon TMkg 
Relative to Ideal Polnt (km) - 

beyond the ‘ideal’ point, where dm is the distance from the 
maneuver point to the ‘ideal’ point. 

3. CHOOSING A MANEUVER STRATEGY 

Under the ideal conditions of constant acceleration, a, , and 
perfect knowledge of the relative positions and velocity of 
the satellites, the selection of a maneuver strategy would be 
clear. First, decide how long you want for a round trip time 
between maneuvers, TR . Then in equation (4)  the distance, 
d ,  from the maneuver to the ‘turn-around’ point replaces 
(16 - d,) and d = Ti * a, / 8 . To minimize the average 
distance from the ‘ideal’ point for this maneuver hequency, 
conduct the maneuvers when Cloudsat’s in-track location 
relative to the ‘ideal’ point is at 7 * d / S  and choose the 
desired relative velocity, vo , after the maneuver so that the 
‘turn-around’ occurs at -d / 8 . Since the relative velocity 
goes from vo to -voin the time TR under constant 
acceleration, a, , 

Under the nominal in-track acceleration of 1 km/day* “2 
used in section 2, an 8 day round-trip would mean a 
maneuver point 7 km from the ‘ideal’ in-track location 
toward the trailing boundary and a ‘turn-around’ point 1 km 
beyond the ‘ideal’ location toward the leading boundary. 
This would keep the average separation small while 
requiring a maneuver frequency of about a once per week. 

However, the atmospheric density is not constant and while 
the GPS data is quite accurate (9 meters, 1-sigma, with 
selective availability off) it does contribute to uncertainty in 
the equatorial crossing separation both directly and through 
errors in the estimation of relative velocity and acceleration 
between the spacecraft. Some filtering could improve the 
accuxacy of the GPS data, but to be conservative in this 

2-540 



analysis we've assumed little ground processing of the GPS 
data is required. In addition, one cannot instantaneously 
command CloudSat to conduct a maneuver based on current 
information. The GPS data from Picasso/CENA may be a 
day or more old when it is received at the RSC and it may 
take the better part of a day before the data is processed and 
the maneuver commands are uploaded to CloudSat and 
executed. So the data on which the maneuver is determined 
may be up to two days old by the time the maneuver is 
executed. 

Figure 6 is a plot of the Mass Spectrometer Incoherent 
Scatter (MSIS) model of atmospheric density (based on 
measured data) for four two-year segments corresponding to 
the two-year portion of the solar cycle during which this 
mission is planned. Variations in density of a factor of two 
or more over the course of a few days is not uncommon. 
While there is some ability to predict the atmospheric 
density a day or so into the future there is no reliable way to 
predict the timing of the large variations associated with 
solar storms. Therefore, any maneuver strategy needs to 
provide enough margin to account for an unexpected drop or 
increase in atmospheric density. It should rarely result in an 
overshoot of the leading/eastern boundary. In the case of a 
potential overshoot it should allow enough time to recognize 
the problem after the maneuver and conduct a 'braking' 
maneuver before the boundary is reached. 

Given an initial relative velocity, vo , and a constant relative 

acceleration, a,. , the distance between the maneuver and the 

'turn-around point' is vi 4 2  * a,.) . So an overestimate of 
the actual relative acceleration by a factor of two would 
result in a 'turn-around point' twice as far from the 
maneuver point as expected. To accommodate the 
unpredictability of the atmosphere it would seem prudent to 
plan for at least a factor of two overestimate of the 
atmospheric density. To begin, let's allow for a maneuver in 
which the change in relative location from the maneuver 
point to the 'turn-around' point is three times larger than 
expected. Assuming a nominal relative acceleration of 1 
km/day**2, selecting a maneuver point 8 km from the 
'ideal' in-track location (toward the trailing boundary) and a 
'turn-around' at the 'ideal' in-track location looks promising 
in several ways; 

1) the nominal time between maneuvers would be 8 
days, 

2) there is a 200% margin for overshoot toward the 
leading boundary, 

3) there is 100% margin toward the trailing boundary to 

Atmospheric Densitv at 700 km 
I 

I I 
J 

Figure 6 
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accommodate for atmospheric uncertainty in the two 
days between the time the data is collected and the 
maneuver is calculated and any delay in executing 
the maneuver. 

4) the ‘turn-around’ point in near optimal to minimize 
the average separation for the nominal atmosphere 

4. CALCULATING/MODELING THE MANEUVERS 

How much does the changing atmospheric density influence 
the relative motion between the satellites? Allowing two 
days from the collection of GPS data to the execution of a 
maneuver and the desire to conduct maneuvers on average 
no more ftequently than once a week, can a strategy like 
that proposed in the previous section maintain the relative 
locations within the required limits under a wide range of 
atmospheric conditions? 

For initial modeling purposes we’ll assume that the relative 
acceleration between the satellites is proportional to the 
atmospheric density. Slight differences in the eccentricities 
and arguments of perigee will cause some relative motion 
on top of this acceleration, but this will average out over the 
course of an orbit. Since the allowable in-track separation 
increases as l/cos(latitude), the maneuver algorithm can 
focus on the equatorial crossings as long as this additional 
motion is not enough to cause the in-track separation limit 
to be exceeded at a latitude other than equator before it is 
exceeded at the equator. One must consider differences 
between the ascending and descending equatorial crossings, 
as will be discussed in section 5 .  

Using the MSIS data the relative motion between the 
satellites can then be modeled by converting the 
atmospheric density to a relative acceleration and 
numerically integrating to obtain relative velocity and 
position as a function of time. 
The interval between data points in the MSIS data is 3 hrs, 
which is short compared to the scale of atmospheric 

M a n e u v e r  

variation and maneuver intervals. So, treating the relative 
acceleration between the satellites as an average represented 
by each 3 hour data point is a reasonable assumption. 

A conversion factor is needed to transform the atmospheric 
density into a relative acceleration. For near circular orbits 
the change in velocity each revolution is 

AVrev = x * p * s *  V * B-’ (8) 

where p is the atmospheric density, s is the semi-major 
axis, V is the satellite’s velocity, and B is the satellite’s 
ballistic coefficient[4]. Since CloudSat and PicassoICena are 
in nearly identical orbits, only the difference in their 
ballistic coefficients causes their velocities to change 
differently. So for each revolution the difference in their 
velocity change is 

AVdg = ~ * p * s * V * ( B ; i  -BCi)  (9) 

where B,, and BCs are the ballistic coefficients of 
PicassoICena and Cloudsat, respectively. 

The ballistic coefficients of CloudSat and PicassoICena are 
still uncertain, but Cloudsat’s current estimate is about 42.5 
kg/m**2 and PicassoICena’s is between 26 and 30 
kg/m**2. Using B, = 42.5, B ,  = 27.6, p = 125 * 
g/cm**3, and the nominal orbit parameters, s = 7077 km, 
and V = 6.49*105 ludday and converting the AVdfl from 
kddaylrev to kddaylday gives a difference in their 
velocity change, in other words an acceleration difference, 
ad$ =.333 kdday**2. Then, from equation (2), 

a, = 3 * ad8 = 1 km/day**2. Since p = 125 * 10-l8 
g/cm**3 is a representative atmospheric density from the 
graphs in Figure 6, this establishes 1 km/day**2 relative 
acceleration as a reasonable reference value. With these 

S t ra teg  Y 
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ballistic coefficients then the atmospheric density can be 
converted to relative acceleration by 

a, = p/(125 *lo-”) (10) 
where a,. is in km/day**2 and p is in g/cm**3. 

With this conversion factor the MSIS data was converted 
into relative accelerations. This established a set of 
representative relative accelerations that could be used to 
test the maneuver strategy described in section 3. It was 
relatively simple to model the relative motion and include 
the variation in the atmosphere, the time delay between 
collection of the GPS data and the maneuver, the 
uncertainty in the GPS data, and the uncertainty of the thrust 
during the maneuvers. 

To implement a strategy we must pick a relative location to 
be the trailing threshold at which to conduct the ‘standard’ 
(non-braking) maneuvers and a desired ‘turn-around’ point. 
Also, we need to pick a leading threshold to conduct braking 
maneuvers, if necessary. These points are shown in Figure 
7. 

The procedure is as follows: 

1) Determine the ‘ideal’ time difference between the 
equatorial crossings of Picasso/Cena and CloudSat. 
This can be determined from the difference in their 
right ascensions or from the longitudes of their 
crossings (from the GPS data) using the rotation rate of 
the Earth. 

Since the relative ascending nodes of the satellites and 
their velocities will not change appreciably between 
maneuvers, this would only need to be calculated 
following each maneuver. Also, an error in this ‘ideal’ 
time difference only affects the ‘ideal’ point. It does not 
affect the relative velocity and acceleration 
calculations. These are more critical since errors in 
velocity and acceleration propagate throughout the time 
between maneuvers. 

2) Estimate the in-track distance of CloudSat from its 
‘ideal’ point. This should be done at the same place in 
the orbit so that minor differences in the orbital 
parameters don’t affect the calculation of the dynamics 
due to atmospheric variation. Either the ascending or 
descending crossings of the equator by one of the 
satellites is an obvious choice. 

One can determine the actual crossing time difference 
by interpolation fiom GPS locations before and after 
the equator crossings. Convert this time difference to a 
location relative to the ‘ideal’ point by subtracting the 
‘ideal’ time difference to get a relative time difference 
between the actual and ‘ideal’ equatorial crossing. 
Multiply this by CloudSat’s actual (inertial) velocity or 
interpolate the GPS data to get the distance between 

two locations separated by the relative time difference. 
To be perfectly correct, these locations should be 
converted to inertial space but the impact of the earth 
rotation is small for this inclination and orbit velocity. 

Estimate the relative velocity and acceleration by fitting 
the relative locations with a parabola. 

Project the relative location forward two days (to 
account for the time between the data collection and the 
maneuver) using the estimated relative acceleration and 
velocity. Check if the in-track distance will exceed 
either threshold. 

If a threshold will be exceeded, calculate a desired 
change in relative velocity, to be executed at the 
estimated time that the threshold will be crossed. 

a) In the case of a standard maneuver (approaching 
trailing/western boundary), the change in relative 
velocity is designed to achieve desired ‘turn- 
around’ point assuming parabolic motion using the 
estimated acceleration. 

b) In the case of a braking maneuver (approaching 
the leading/eastern boundary), the relative velocity 
change should just stop the relative motion so 
CloudSat will start to drift back toward the trailing 
boundary. 

Execute that maneuver at the appointed time and re- 
start the process. 

The exact point to conduct a maneuver would be chosen so 
that the maneuver’s location within the orbit would best 
maintain CloudSat’s orbital elements relative to Picasso’s. 
This is still being studied and is discussed briefly in section 
6. 

Except for step 1, this whole process was simply modeled in 
a spreadsheet. As mentioned previously, the ‘ideal’ time 
difference or location is not a major contributor to errors in 
the maneuver determination since it does not affect the 
relative velocity and acceleration calculations. Starting with 
an initial relative location and velocity, ‘true’ in-track 
relative velocities and locations were created by numerically 
integrating the relative acceleration based on the 
atmospheric density data. As maneuvers are generated they 
are added to ‘true’ relative velocity calculation (including 
any adjustment for uncertainty in the actual thrust). 
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Maneuvers without Braking 
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Figure 9 

Initially, the process was modeled without errors in the 
relative positions or thrusts and without a leading threshold. 
The acceleration estimate used for computing maneuvers 
was the average 'true' relative acceleration during the day 
ending two days before the maneuver. This was done to 
determine how often a maneuver would overshoot the 
leading/western boundary due to changes in the atmospheric 
density. This would give an initial feeling of how large a 
margin would be needed since atmospheric variation is the 
major error source. Because of the nature of the MSIS data, 
these relative locations, velocities and accelerations were 
generated at 3-hour intervals rather than at the equatorial 
crossings. This is appropriate for this model since we are 
just considering the in-track relative motion due to the 
atmospheric drag. 

Figure 8 shows the equatorial crossing separations for each 
of the four two-year periods using the 8 km relative in-track 
(.5 km equatorial) threshold for standard maneuvers and a 0 
km relative in-track (0 km equatorial) desired turn-around. 
This threshold and the 'turn-around' point were selected 
through some trial and error. The results vary with initial 
conditions since that determines the timing of the 
maneuvers relative to the sharp drops in atmospheric density 
that occasionally OCCUT. The results shown are among the 
'worst' in the sense of the greatest overshoot of the 'turn- 
around' point. Only the large drops in atmospheric density 
associated with major solar storms in the 1981-1982 data 
result in overshoots beyond the leading/eastern boundary. 
Since the average atmospheric density was highest during 

this two year period, the average relative acceleration was 
highest and average time between maneuvers was shortest 
(about 8 days). This indicated that the westendtrailing 
threshold and desired 'turn-around' point are promising. 
The approach meets the desired maneuver frequency 
without needing to separate the trailing/western threshold 
and the 'turn-around' point too much. This leaves adequate 
margin (200%) between the 'turn-around' point and the 
leading/eastem boundary. 

Figure 9 shows the atmospheric density drop and 
corresponding overshoot in late 1981. One can see the 
sensitivity of the process to the timing of the maneuvers 
relative to a sharp drop in density. There are similar density 
drops beginning around days 3 15 and 345. The timing of the 
maneuvers for the first drop are such that the impact is 
spread across two maneuvers. In the second, case the 
density drop occurs just after the maneuver is calculated so 
the estimated relative acceleration is much higher than the 
actual relative acceleration, causing the overshoot. 

Next, uncertainty in the relative locations, along with 
uncertainty in the relative velocity changes due to thruster 
variation were added. Also, the leading/eastern threshold to 
trigger braking maneuvers was included. 

Calculating the relative location could also be thought of as 
subtracting the GPS locations of CloudSat and 
Picasso/Cena. The horizontal uncertainty from the Motorola 
Viceroy GPS receiver on CloudSat is 9 meters (1-sigma) 
with selective availability (SA) off. Assuming the same 
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uncertainty in the PicassolCena receiver means the 
uncertainty in their difference is 9 * f i  meters. Random 
Gaussian noise with this standard deviation was added to 
the 'true' relative locations. These noisy relative locations 
are then the basic inputs used to estimate Cloudsat's 
velocity and acceleration relative to the 'ideal' point. 

The leading threshold needs to be close enough to the 
leading boundary to not generate too many unnecessary 
braking maneuvers. However, it should not so be close that 
CloudSat will overshoot the leading boundary due to errors 
in the estimation of the relative velocity and acceleration 
and changes in the atmosphere in the two days between the 
GPS data collection and the maneuver. A leading threshold 
14 km from the 'ideal' location toward the eastern boundary 
worked well for this study. 

To estimate the relative velocity and acceleration (Step 3) at 
each time point, a parabola was fit through that relative 
location, the relative location one-half day earlier and the 
relative location one day earlier. This method would on rare 
occasions during low-density periods result in an 
acceleration estimate which was in the wrong direction 
(toward Picasso/Cena) due to the noisy data. To avoid this 
problem, the estimates over the previous day were averaged 
together. This somewhat crude estimate could be improved 
by fitting the parabola to more points. However, it is a 
simple calculation that is adequate for this problem, and one 
of the objectives of this analysis is to demonstrate that the 
maneuvers can be computed quite simply fiom the GPS 

data. 

If a maneuver is conducted in the two days prior to the time 
of the estimate, it disturbs the parabolic motion and 
invalidates the estimation described above. To deal with 
this, pseudo-locations were created from which the impact 
of the requested maneuvers was removed. The parabolic fits 
were done using these psuedo-locations. If no maneuver had 
been conducted in the two days prior to the estimate the 
velocities from the parabolic fits over the prior day were 
averaged giving an estimate of the relative velocity one-half 
day earlier. One-half day multiplied by the estimated 
acceleration was then added to provide a current velocity 
estimate. 

These velocity and acceleration estimates were then used to 
project the relative location ahead two days and that result 
was compared to the thresholds. If the estimate showed a 
crossing of the trailing threshold a maneuver was scheduled 
at the estimated crossing time. The estimated relative 
velocity going into the maneuver in two days is 

- - 
where v r  and ar are the estimated relative velocity and 
acceleration in M d a y  and Mday**2 respectively. The 
desired relative velocity coming out of the maneuver to 
achieve the desired 'turn-around' location for the this 
estimated relative acceleration is 

Performance with Braking Maneuvers 

Relative In-track Location (km) 

0 ! 3 l m " ~ " a 4 B m " ~ m m  

Days from Jan. 1,1981 

Figure 10 
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where d is the distance between the estimated location two 
days ahead and the desired 'turn-around' point. Effectively, 
this is using the atmospheric density over that previous day 
(as reflected in the relative acceleration estimate) as an 
estimate for the atmospheric density for the days leading up 
to and following the maneuver. 

Then the desired relative change in velocity, (not to be 
confused with A V ,  the change in Cloudsat's inertial 
velocity from the maneuver) is 

If the projected location two days ahead indicates a crossing 
of the leading/eastern threshold, the desired change in 
relative velocities is just enough to stop the estimated 
relative velocity so 

The uncertainty in thrust from Cloudsat's thrusters is 
expected to be 2% (1 sigma). At the time of a maneuver this 
random error is added to the desired relative velocity change 
and the 'true' relative velocity is changed by that result. The 
actual AV of the maneuver would be 1/3 the relative 
velocity change and in the direction opposite the relative 
velocity change as discussed in Section 2. 

Figure 10 shows a maneuver sequence using the 1981-1982 
density data. Though this is the most challenging of the four 
data sets only two braking maneuvers were required around 
days 350 and 550 and in neither case was the leading 
boundary (-16 km in-track = -1 km cross track) exceeded. 

Since the results are sensitive to the timing of the maneuvers 
relative to the changes in atmospheric density the starting 
location was varied from 0 to -12 km in .25 km intervals for 
each of the four two-year data sets generating 49 different 
maneuver sequences through each data set. The results of 
these runs are shown in Table 1. There are some interesting 
things to notice from this table. First, in all cases the average 
time between maneuvers meets the desire of 7 days or more. 
Second, there were a very few occasions when the leading 
boundary was overshot. However, there were very few 
braking maneuvers and the relative velocity change (and 
thus fuel consumption) due to these was a very small 
portion of the total relative velocity change. So, to avoid the 
overshoots one should probably pull the leading threshold 
back from the boundary to, say, - 8 km. This will result in a 
few additional braking maneuvers (1 to 3 per year), but they 
will have little impact on the total fuel budget, will prevent 
the rare overshoot, and leave some additional buffer to 
accommodate the effects of differences in the orbital 
elements of the two satellites which will be discussed in 
section 5 

5 .  EQUATORIAL CROSSINGS VS. OTHER LATITUDES 

This study has focused on relative motion of the two 
satellites due to the difference in their drag and the changing 

B I ( L e a d i n g )  ( T r a i l i n g )  V e l o c i t y  ; V e l o c i t y  
E T o t a l #  # B r a k i n g  : T u r n a r o u n d  ' M a n e u v e r  5 C h a n g e  C h a n g e  

i 
I 9,90 -  - - ; - "- I I d-03-- - - 

m a n e u v e r s  { m  a n e u v e r s  ( k m )  ( k m )  ( m / s e c )  / ( m l s e c )  
9 . 3 2  3 . 5 5  0 . 0 0  1 

3 . 6 0  
' 0 . 2 9  t - 1 1 . 6 8  

11111 

5 1  . O B  
I-- " I - L -  I 

5 4  ? 1 . 0 0  ! - - - - - I "  - 7 . 8 1  L 

2 - 5 4 7  



atmospheric density. The procedures described have 
established that by observing the relative locations of the 
satellite once per orbit at one of the equatorial crossings one 
should be able to keep that equatorial crossing point for 
CloudSat within +/- 1 km of Picasso/Cena’s. As noted in 
section 2, the allowable in-track range increases by at least 
l/cos(latitude) as the satellites move away from the equator. 
Intuitively small variations in eccentricity, and argument of 
perigee will not cause enough relative motion to exceed the 
in-track range at some other latitude before it is exceeded at 
the equator. If so, it would only be by some very small 
amount near the equator before the l/cos(latitude) effect 
overcomes it. This has been confiied using Aerospace 
Corporation’s Satellite Orbit Analysis Program (SOAP). A 
difference of .0001 in eccentricity and 30’ in argument of 
perigee (both larger than expected) results in a change in the 
in-track separation of about 9 km between the equator and 
the point of highest latitude (82’). However, the allowable 
in-track range relative to the ‘ideal’ point increases from +/- 
16 km at the equator to +/- 32 km at 60” latitude and +/- 115 
km at 82” latitude. 

On the other hand, differences in the eccentricity and 
argument of perigee would mean the in-track separation of 
the two satellites would be different at the ascending and 
descending equatorial crossings. This is because even with 
the same semi-major axis (and therefore the same period) 
one satellite would have a slightly longer time between the 
ascending and descending equatorial crossings than the 
other. This would cause an offset in the relative location of 
CloudSat at the ascending crossing compared to that at the 
descending crossing. The in-track thresholds at the crossing 
where the calculations are performed might need to be 
reduced and or shifted somewhat to accommodate this 
difference. Based on the results in this study it looks a 
though a difference of 4 km or so in-track could be easily 
handled for these ballistic coefficients. Preliminary 
investigations using SOAP indicate that relative to the 
nominal Picasso orbit a maximum 4.5 km offset results from 
a 20 degree difference in argument of perigee or a .0001 
difference in eccentricity. 

Small variations in the inclination will cause the largest 
cross track separation to occur slightly off the equator. 
However, again based on SOAP, if the two ground tracks 
were separated at the equator by 1 km and the difference in 
their inclinations is the maximum specified variation of 
Cloudsat’s inclination of .OOO 12”, their maximum ground 
track separation is only increased by 11 meters. 

6. CONCLUSIONS AND FURTHER EFFORTS 
This study has shown that under some simplifying 
assumptions it is possible to use a relatively simple curve 
fitting approach to calculate the timing and size of 
Cloudsat’s maneuvers based on data from GPS receivers 
on-board CloudSat and Picasso/Cena. The ground track of 
CloudSat can be maintained to within +/- 1 km in cross- 
track relative to Picasso/Cena’s ground track. The average 

time between maneuvers is a week or more for the current 
estimates of the ballistic coefficients of the satellites. The 
implementation of the strategy does not require atmospheric 
prediction or orbit propagation models. 

Throughout this paper it has been assumed that since the 
satellites are in nearly identical orbits they experience nearly 
identical orbit perturbations except for the difference in 
atmospheric drag. It is also assumed that the orbits are close 
enough to circular that any relative motion during an orbit, 
other than that due to the atmospheric drag, is small enough 
that one only needs to monitor the satellites at an equatorial 
crossing in order to assure the cross-track requirement is 
met throughout the orbit. However, these assumptions need 
to be confirmed against high-fidelity models. There are 
plans to test this strategy against high fidelity orbital 
simulations at both JPL and The Aerospace Corporation. 
These simulations include realistic models of the 
atmospheric drag, gravity, solar pressure, GPS, and 
spacecraft thrusters. In addition, these simulations will be 
used to determine the appropriate location on the orbit to 
conduct the maneuvers so that they do not, over the course 
of several maneuvers, create unacceptable differences in the 
eccentricity or argument of perigee of CloudSat relative to 
Picasso. It is believed that by conducting each maneuver 
near apogee or perigee, whichever reduces any eccentricity 
difference between the satellites, will do the job, but this 
needs further study. 

If these tests c o n f i i  the reasonableness of the simplifying 
assumptions, the spreadsheet used in this analysis can be 
used to refine the strategy or quickly examine changes to the 
system such as the ballistic coefficients or the two day delay 
between GPS data collection and the maneuvers. For 
instance, since the relative location in the case presented 
doesn’t approach the trailing boundary one might move the 
trailing maneuver threshold to 10 km or 12 km to 
accommodate differences in eccentricity and argument of 
perigee. This would result in slightly larger, less frequent 
maneuvers, but with a somewhat greater risk of overshoot. 
Pulling the leading threshold back to -8 km should catch the 
overshoots in time at the expense of a few more ‘braking’ 
maneuvers. The net impact may be fewer maneuvers overall 
at the expense of a slight increase in fuel consumption. 
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APPENDIX 

Consider a parabolic round trip path starting a distance 
do > 0 from the ‘ideal’ location with a ‘turn-around’ location 

dT < do and a constant relative acceleration, U ,  . Let d( t )  be 
the location at time t relative to the ‘ideal’ location and let the 
time t = 0 correspond to the time of the ‘turn-around’. Then 

d ( t ) = d ,  +ar  * t 2  / 2  (All 

and the relative velocity at time t is 
vr( t )  = a, * t 

If d( t )  = do in equation (Al), then t = + J 2  * (do - dT 1 a,  
and the round trip time is 

Then from equation (A2) the relative velocities at the start and 
end of the roundtrip are 

V,(-T, / 2 ) = - J 2 * ( d 0  - d T ) * a ,  (A41 
and 

v,(TR / 2 ) = + , / 2 * ( d 0  - d T ) * a ,  (A51 

The average distance from the ‘ideal’ point over the course of the 
roundtrip is 

TR I 2  TR12 

d ,  = (l /TR)* Jld(t)ldt =(2/Tr1)* Jld(t)ldt (A6) 
-TR 12 0 

since d ( t )  is symmetric about t = 0 .  

IfdT 2 0 ,  

d,, = ( 2 / T R ) *  (dT +ar  * t 2  /2)dt  ;i 0 

=@IT,)*[  (dT * t + a r  * t 3  / 6 F l 2  

=(2/T,)*(T,  /2)*(dT +a ,  *(TR / 2 ) 2  16) (A7) 

= d ,  +a,  *(TR /2)2 / 6  

=dT +ar *(2*(do -dT) /U, )  / 6  
=(do +2*dT) /3  
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E d T  <O,then d(t)<Ofor O I t < , / - 2 * d T l a ,  , s o  
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